When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. No-hiding theorem - Wikipedia

    en.wikipedia.org/wiki/No-hiding_theorem

    For example, the law of conservation of energy states that the energy of a closed system must remain constant. It can neither increase nor decrease without coming in contact with an external system. If we consider the whole universe as a closed system, the total amount of energy always remains the same.

  3. Noether's theorem - Wikipedia

    en.wikipedia.org/wiki/Noether's_theorem

    Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law.This is the first of two theorems (see Noether's second theorem) published by mathematician Emmy Noether in 1918. [1]

  4. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    All of the conservation laws listed above are local conservation laws. A local conservation law is expressed mathematically by a continuity equation, which states that the change in the quantity in a volume is equal to the total net "flux" of the quantity through the surface of the volume. The following sections discuss continuity equations in ...

  5. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    Continuity equations are a stronger, local form of conservation laws. For example, a weak version of the law of conservation of energy states that energy can neither be created nor destroyed—i.e., the total amount of energy in the universe is fixed. This statement does not rule out the possibility that a quantity of energy could disappear ...

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's second law, in modern form, states that the time derivative of the momentum is the force: =. If the mass m {\displaystyle m} does not change with time, then the derivative acts only upon the velocity, and so the force equals the product of the mass and the time derivative of the velocity, which is the acceleration: [ 22 ] F = m d v d t ...

  7. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law of conservation of mass can only be formulated in classical mechanics, in which the energy scales associated with an isolated system are much smaller than , where is the mass of a typical object in the system, measured in the frame of reference where the object is at rest, and is the speed of light.

  8. Conserved current - Wikipedia

    en.wikipedia.org/wiki/Conserved_current

    In physics a conserved current is a current, , that satisfies the continuity equation =.The continuity equation represents a conservation law, hence the name. Indeed, integrating the continuity equation over a volume , large enough to have no net currents through its surface, leads to the conservation law =, where = is the conserved quantity.

  9. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    Boyle's law is used to predict the result of introducing a change, in volume and pressure only, to the initial state of a fixed quantity of gas. The initial and final volumes and pressures of the fixed amount of gas, where the initial and final temperatures are the same (heating or cooling will be required to meet this condition), are related ...