When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chemotroph - Wikipedia

    en.wikipedia.org/wiki/Chemotroph

    These molecules can be organic (chemoorganotrophs) or inorganic (chemolithotrophs). The chemotroph designation is in contrast to phototrophs, which use photons. Chemotrophs can be either autotrophic or heterotrophic. Chemotrophs can be found in areas where electron donors are present in high concentration, for instance around hydrothermal vents.

  3. Lithoautotroph - Wikipedia

    en.wikipedia.org/wiki/Lithoautotroph

    A lithoautotroph is an organism which derives energy from reactions of reduced compounds of mineral (inorganic) origin. [1] Two types of lithoautotrophs are distinguished by their energy source; photolithoautotrophs derive their energy from light while chemolithoautotrophs (chemolithotrophs or chemoautotrophs) derive their energy from chemical reactions. [1]

  4. Chemosynthesis - Wikipedia

    en.wikipedia.org/wiki/Chemosynthesis

    Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...

  5. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    The sources of energy can be light or chemical compounds; the sources of carbon can be of organic or inorganic origin. [ 1 ] The terms aerobic respiration , anaerobic respiration and fermentation ( substrate-level phosphorylation ) do not refer to primary nutritional groups, but simply reflect the different use of possible electron acceptors in ...

  6. Carbon source (biology) - Wikipedia

    en.wikipedia.org/wiki/Carbon_source_(biology)

    An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms.Autotrophs produce complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide, [1] generally using energy from light or inorganic chemical reactions. [2]

  7. Hydrothermal vent microbial communities - Wikipedia

    en.wikipedia.org/wiki/Hydrothermal_vent...

    The Reductive Acetyl CoA pathway has only been found in chemoautotrophs. This pathway does not require ATP as the pathway is directly coupled to the reduction of H 2. Organisms that have been found with this pathway prefer H 2 rich areas. Species include deltaproteobacterium such as Dulfobacterium autotrophicum, acetogens and methanogenic Archaea.

  8. Photoautotroph - Wikipedia

    en.wikipedia.org/wiki/Photoautotroph

    Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy). Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.

  9. Nitrifying bacteria - Wikipedia

    en.wikipedia.org/wiki/Nitrifying_bacteria

    Recent results, however, show that HAO does not produce nitrite as a direct product of catalysis. This enzyme instead produces nitric oxide and three electrons. Nitric oxide can then be oxidized by other enzymes (or oxygen) to nitrite. In this paradigm, the electron balance for overall metabolism needs to be reconsidered. [7]