Search results
Results From The WOW.Com Content Network
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]
In Julia, the CovarianceMatrices.jl package [11] supports several types of heteroskedasticity and autocorrelation consistent covariance matrix estimation including Newey–West, White, and Arellano. In R , the packages sandwich [ 6 ] and plm [ 12 ] include a function for the Newey–West estimator.
The covariance matrix (also called second central moment or variance-covariance matrix) of an random vector is an matrix whose (i,j) th element is the covariance between the i th and the j th random variables.
A VAR with p lags can always be equivalently rewritten as a VAR with only one lag by appropriately redefining the dependent variable. The transformation amounts to stacking the lags of the VAR(p) variable in the new VAR(1) dependent variable and appending identities to complete the precise number of equations.
In particular, the Minnesota prior assumes that each variable follows a random walk process, possibly with drift, and therefore consists of a normal prior on a set of parameters with fixed and known covariance matrix, which will be estimated with one of three techniques: Univariate AR, Diagonal VAR, or Full VAR.
A similar canonical set of sigma points can be generated in any number of dimensions by taking the zero vector and the points comprising the rows of the identity matrix, computing the mean of the set of points, subtracting the mean from each point so that the resulting set has a mean of zero, then computing the covariance of the zero-mean set ...
The work of James and Stein has been extended to the case of a general measurement covariance matrix, i.e., where measurements may be statistically dependent and may have differing variances. [9] A similar dominating estimator can be constructed, with a suitably generalized dominance condition.