Search results
Results From The WOW.Com Content Network
The administration of adenosine also reduces blood flow to coronary arteries past the occlusion. Other coronary arteries dilate when adenosine is administered while the segment past the occlusion is already maximally dilated, which is a process called coronary steal. This leads to less blood reaching the ischemic tissue, which in turn produces ...
cAMP represented in three ways Adenosine triphosphate. Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms ...
In some bacteria and archaea, ATP synthesis is driven by the movement of sodium ions through the cell membrane, rather than the movement of protons. [ 78 ] [ 79 ] Archaea such as Methanococcus also contain the A 1 A o synthase, a form of the enzyme that contains additional proteins with little similarity in sequence to other bacterial and ...
Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical ...
Adenosine monophosphate (AMP), also known as 5'-adenylic acid, is a nucleotide. AMP consists of a phosphate group, the sugar ribose , and the nucleobase adenine . It is an ester of phosphoric acid and the nucleoside adenosine . [ 1 ]
Adenosine + H 2 O → Inosine + NH 3 (catalyzed by adenosine deaminase in skeletal muscle, blood, liver) Ammonia is toxic, disrupts cell function, and permeates cell membranes. Ammonia becomes ammonium (NH + 4) depending on the pH of the cell or plasma. Ammonium is relatively non-toxic and does not readily permeate cell membranes. [14] NH 3 + H ...
Fatigue and sedation after heavy exertion can be caused by excess adenosine in the cells which signals muscle fiber to feel fatigued. In the brain, excess adenosine decreases alertness and causes sleepiness. In this way, adenosine may play a role in fatigue from MADD. [4] Recovery from over-exertion can be hours, days or even months.
This process is related to osmosis, the movement of water across a selective membrane, which is why it is called "chemiosmosis". ATP synthase is the enzyme that makes ATP by chemiosmosis. It allows protons to pass through the membrane and uses the free energy difference to convert phosphorylate adenosine diphosphate (ADP) into ATP. The ATP ...