When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particle in a ring - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_ring

    In quantum mechanics, the case of a particle in a one-dimensional ring is similar to the particle in a box. The Schrödinger equation for a free particle which is restricted to a ring (technically, whose configuration space is the circle S 1 {\displaystyle S^{1}} ) is

  3. List of quantum-mechanical systems with analytical solutions

    en.wikipedia.org/wiki/List_of_quantum-mechanical...

    The free particle; The one-dimensional potentials The particle in a ring or ring wave guide; The delta potential The single delta potential; The double-well delta potential; The steps potentials The particle in a box / infinite potential well; The finite potential well; The step potential; The rectangular potential barrier; The triangular potential

  4. Quantum pendulum - Wikipedia

    en.wikipedia.org/wiki/Quantum_pendulum

    The general solution of the above differential equation for a given value of a and q is a set of linearly independent Mathieu cosines and Mathieu sines, which are even and odd solutions respectively. In general, the Mathieu functions are aperiodic; however, for characteristic values of a n ( q ) , b n ( q ) {\displaystyle a_{n}(q),b_{n}(q ...

  5. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The Klein–Gordon equation, + =, was the first such equation to be obtained, even before the nonrelativistic one-particle Schrödinger equation, and applies to massive spinless particles. Historically, Dirac obtained the Dirac equation by seeking a differential equation that would be first-order in both time and space, a desirable property for ...

  6. Dynamical pictures - Wikipedia

    en.wikipedia.org/wiki/Dynamical_pictures

    If the Hamiltonian has explicit time-dependence (for example, if the quantum system interacts with an applied external electric field that varies in time), it will usually be advantageous to include the explicitly time-dependent terms with ,, leaving , time-independent. We proceed assuming that this is the case.

  7. and this is the Schrödinger equation. Note that the normalization of the path integral needs to be fixed in exactly the same way as in the free particle case. An arbitrary continuous potential does not affect the normalization, although singular potentials require careful treatment.

  8. Unitary transformation (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Unitary_transformation...

    In quantum mechanics, the Schrödinger equation describes how a system changes with time. It does this by relating changes in the state of the system to the energy in the system (given by an operator called the Hamiltonian). Therefore, once the Hamiltonian is known, the time dynamics are in principle known.

  9. Interaction picture - Wikipedia

    en.wikipedia.org/wiki/Interaction_picture

    By utilizing the interaction picture, one can use time-dependent perturbation theory to find the effect of H 1,I, [15]: 355ff e.g., in the derivation of Fermi's golden rule, [15]: 359–363 or the Dyson series [15]: 355–357 in quantum field theory: in 1947, Shin'ichirō Tomonaga and Julian Schwinger appreciated that covariant perturbation ...