When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Citric acid cycle - Wikipedia

    en.wikipedia.org/wiki/Citric_acid_cycle

    Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.

  3. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    Oxidative phosphorylation contributes the majority of the ATP produced, compared to glycolysis and the Krebs cycle. While the ATP count is glycolysis and the Krebs cycle is two ATP molecules, the electron transport chain contributes, at most, twenty-eight ATP molecules. A contributing factor is due to the energy potentials of NADH and FADH 2.

  4. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    To fully oxidize the equivalent of one glucose molecule, two acetyl-CoA must be metabolized by the Krebs cycle. Two low-energy waste products, H 2 O and CO 2, are created during this cycle. [9] [10] The citric acid cycle is an 8-step process involving 18 different enzymes and co-enzymes.

  5. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    The metabolites are for each turn of the Krebs cycle. The Krebs cycle turns twice for each six-carbon molecule of glucose that passes through the aerobic system – as two three-carbon pyruvate molecules enter the Krebs cycle. Before pyruvate enters the Krebs cycle it must be converted to acetyl coenzyme A.

  6. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    An example of a coupled reaction is the phosphorylation of fructose-6-phosphate to form the intermediate fructose-1,6-bisphosphate by the enzyme phosphofructokinase accompanied by the hydrolysis of ATP in the pathway of glycolysis. The resulting chemical reaction within the metabolic pathway is highly thermodynamically favorable and, as a ...

  7. Citrate–malate shuttle - Wikipedia

    en.wikipedia.org/wiki/Citrate–malate_shuttle

    The citrate–malate shuttle is present in humans and other higher eukaryotic organisms and is closely related to the Krebs cycle. The system is responsible for the transportation of malate into the mitochondrial matrix to serve as an intermediate in the Krebs cycle and the transportation of citrate into the cytosol for secretion in Aspergillus ...

  8. Beta oxidation - Wikipedia

    en.wikipedia.org/wiki/Beta_oxidation

    In practice, it is closer to 14 ATP for a full oxidation cycle as 2.5 ATP per NADH molecule is produced, 1.5 ATP per each FADH 2 molecule is produced and Acetyl-CoA produces 10 ATP per rotation of the citric acid cycle [13] (according to the P/O ratio). This breakdown is as follows:

  9. Protein metabolism - Wikipedia

    en.wikipedia.org/wiki/Protein_metabolism

    Since the intermediates being created are consumed, the body makes no net gain. Energy is lost through futile cycles. Proteases prevent this cycle from occurring by altering the rate of one of the pathways, or by cleaving a key enzyme, they can stop one of the pathways.