Search results
Results From The WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
A phospholipid bilayer is an example of a biological semipermeable membrane. It consists of two parallel, opposite-facing layers of uniformly arranged phospholipids. Each phospholipid is made of one phosphate head and two fatty acid tails. [3] The plasma membrane that surrounds all biological cells is an example of a phospholipid bilayer. [2]
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
Osmosis in a U-shaped tube. Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. [1] It is also defined as the measure of the tendency of a solution to take in its pure solvent by osmosis.
Osmotic power, salinity gradient power or blue energy is the energy available from the difference in the salt concentration between seawater and river water.Two practical methods for this are reverse electrodialysis (RED) and pressure retarded osmosis (PRO).
Reverse osmosis is a more economical way to concentrate liquids (such as fruit juices) than conventional heat-treatment. Concentration of orange and tomato juice has advantages including a lower operating cost and the ability to avoid heat-treatment, which makes it suitable for heat-sensitive substances such as protein and enzymes .
Forward osmosis (FO) is an osmotic process that, like reverse osmosis (RO), uses a semi-permeable membrane to effect separation of water from dissolved solutes.
It occurs in a hypotonic environment, where water moves into the cell by osmosis and causes its volume to increase to the point where the volume exceeds the membrane's capacity and the cell bursts. The presence of a cell wall prevents the membrane from bursting, so cytolysis only occurs in animal and protozoa cells which do not have cell walls.