Search results
Results From The WOW.Com Content Network
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
The nozzles on a rocket designed to place satellites in orbit are constructed using such converging-diverging geometry. The energy and continuity equations can take on particularly helpful forms for the steady, uniform, isentropic flow through the nozzle.
As an example calculation using the above equation, assume that the propellant combustion gases are: at an absolute pressure entering the nozzle of p = 7.0 MPa and exit the rocket exhaust at an absolute pressure of p e = 0.1 MPa; at an absolute temperature of T = 3500 K; with an isentropic expansion factor of γ = 1.22 and a molar mass of M ...
Table showing the reversal in the physics of nozzles and diffusers with changing Mach numbers. Therefore, to accelerate a flow to Mach 1, a nozzle must be designed to converge to a minimum cross-sectional area and then expand. This type of nozzle – the converging-diverging nozzle – is called a de Laval nozzle after Gustaf de Laval, who ...
Figure 1a shows the flow through the nozzle when it is completely subsonic (i.e. the nozzle is not choked). The flow in the chamber accelerates as it converges toward the throat, where it reaches its maximum (subsonic) speed at the throat. The flow then decelerates through the diverging section and exhausts into the ambient as a subsonic jet.
A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent (CD) nozzle ("con-di nozzle"). Convergent nozzles accelerate subsonic fluids. If the nozzle pressure ratio is high enough, then the flow will reach sonic velocity at the narrowest point (i.e. the nozzle throat).
Rocket motors also employ convergent-divergent nozzles, but these are usually of fixed geometry, to minimize weight. Because of the high pressure ratios associated with rocket flight, rocket motor convergent-divergent nozzles have a much greater area ratio (exit/throat) than those fitted to jet engines.
In a nozzle, the converging or diverging area is modeled with isentropic flow, while the constant area section afterwards is modeled with Fanno flow. For given upstream conditions at point 1 as shown in Figures 3 and 4, calculations can be made to determine the nozzle exit Mach number and the location of a normal shock in the constant area duct.