Search results
Results From The WOW.Com Content Network
If A is an m × n matrix and A T is its transpose, then the result of matrix multiplication with these two matrices gives two square matrices: A A T is m × m and A T A is n × n. Furthermore, these products are symmetric matrices. Indeed, the matrix product A A T has entries that are the inner product of a row of A with a column of A T.
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: [ 3 ]
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
In complex matrices, symmetry is often replaced by the concept of Hermitian matrices, which satisfies A ∗ = A, where the star or asterisk denotes the conjugate transpose of the matrix, that is, the transpose of the complex conjugate of A.
Specifically, the singular value decomposition of an complex matrix is a factorization of the form =, where is an complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, is an complex unitary matrix, and is the conjugate transpose of . Such decomposition ...
The transpose of an upper triangular matrix is a lower triangular matrix and vice versa. A matrix which is both symmetric and triangular is diagonal. In a similar vein, a matrix which is both normal (meaning A * A = AA *, where A * is the conjugate transpose) and triangular is also diagonal.
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.