When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In particular, any differentiable function must be continuous at every point in its domain. The converse does not hold: a continuous function need not be differentiable. For example, a function with a bend, cusp, or vertical tangent may be continuous, but fails to be differentiable at the location of the anomaly.

  3. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  4. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    Product rule: For two differentiable functions f and g, () = +. An operation d with these two properties is known in abstract algebra as a derivation . They imply the power rule d ( f n ) = n f n − 1 d f {\displaystyle d(f^{n})=nf^{n-1}df} In addition, various forms of the chain rule hold, in increasing level of generality: [ 12 ]

  5. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    If a continuous function on an open interval (,) satisfies the equality () =for all compactly supported smooth functions on (,), then is identically zero. [1] [2]Here "smooth" may be interpreted as "infinitely differentiable", [1] but often is interpreted as "twice continuously differentiable" or "continuously differentiable" or even just "continuous", [2] since these weaker statements may be ...

  6. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    of an infinitely many times differentiable function f : R → R as its "infinite order Taylor polynomial" at a. Now the estimates for the remainder imply that if, for any r, the derivatives of f are known to be bounded over (a − r, a + r), then for any order k and for any r > 0 there exists a constant M k,r > 0 such that

  7. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    The symmetry may be broken if the function fails to have differentiable partial derivatives, which is possible if Clairaut's theorem is not satisfied (the second partial derivatives are not continuous). The function f(x, y), as shown in equation , does not have symmetric second derivatives at its origin.

  8. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    A twice differentiable function of one variable is convex on an interval if and only if its second derivative is non-negative there; this gives a practical test for convexity. Visually, a twice differentiable convex function "curves up", without any bends the other way (inflection points).

  9. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point (where the function is differentiable) may be either a local maximum, a local minimum or a saddle point. If the function is at least twice continuously differentiable the different cases may be distinguished by considering the eigenvalues of the Hessian matrix of second derivatives.