When.com Web Search

  1. Ads

    related to: example of commutative property in math multiplication

Search results

  1. Results From The WOW.Com Content Network
  2. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...

  3. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    For example, the order does not matter in the multiplication of real numbers, that is, a × b = b × a, so we say that the multiplication of real numbers is a commutative operation. However, operations such as function composition and matrix multiplication are associative, but not (generally) commutative.

  4. Associative algebra - Wikipedia

    en.wikipedia.org/wiki/Associative_algebra

    A commutative algebra is an associative algebra for which the multiplication is commutative, or, equivalently, an associative algebra that is also a commutative ring. In this article associative algebras are assumed to have a multiplicative identity, denoted 1; they are sometimes called unital associative algebras for clarification.

  5. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    One of the main properties of multiplication is the commutative property, which states in this case that adding 3 copies of 4 gives the same result as adding 4 copies of 3: = + + + = Thus, the designation of multiplier and multiplicand does not affect the result of the multiplication. [1] [2]

  6. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    In general, matrices, even invertible matrices, do not form an abelian group under multiplication because matrix multiplication is generally not commutative. However, some groups of matrices are abelian groups under matrix multiplication – one example is the group of 2 × 2 {\displaystyle 2\times 2} rotation matrices .

  7. Commutative ring - Wikipedia

    en.wikipedia.org/wiki/Commutative_ring

    In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental ...

  8. Ring theory - Wikipedia

    en.wikipedia.org/wiki/Ring_theory

    A ring is called commutative if its multiplication is commutative. Commutative rings resemble familiar number systems, and various definitions for commutative rings are designed to formalize properties of the integers. Commutative rings are also important in algebraic geometry.

  9. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    Hence when n = 1, R is an R-module, where the scalar multiplication is just ring multiplication. The case n = 0 yields the trivial R-module {0} consisting only of its identity element. Modules of this type are called free and if R has invariant basis number (e.g. any commutative ring or field) the number n is then the rank of the free module.