Search results
Results From The WOW.Com Content Network
In computer science, the string-to-string correction problem refers to determining the minimum cost sequence of edit operations necessary to change one string into another (i.e., computing the shortest edit distance). Each type of edit operation has its own cost value. [1]
In the string representing the integer x, the n th digit is 1 if F −n appears in the sum that represents x; that digit is 0 otherwise. For example, 24 may be represented by the string 100101001, which has the digit 1 in places 9, 6, 4, and 1, because 24 = F −1 + F −4 + F −6 + F −9 .
One of many examples from algebraic geometry in the first half of the 20th century: Severi (1946) claimed that a degree-n surface in 3-dimensional projective space has at most (n+2 3 )−4 nodes, B. Segre pointed out that this was wrong; for example, for degree 6 the maximum number of nodes is 65, achieved by the Barth sextic , which is more ...
The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...
Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .
It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test.
In mathematical analysis, Cesàro summation (also known as the Cesàro mean [1] [2] or Cesàro limit [3]) assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.
The sum of squares of residuals decreased from the initial value of 1.445 to 0.00784 after the fifth iteration. The plot in the figure on the right shows the curve determined by the model for the optimal parameters with the observed data.