Search results
Results From The WOW.Com Content Network
If the quadrilateral is rectangle, then equation simplifies further since now the two diagonals are of equal length as well: 2 a 2 + 2 b 2 = 2 e 2 {\displaystyle 2a^{2}+2b^{2}=2e^{2}} Dividing by 2 yields the Euler–Pythagoras theorem:
A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.
If an horizontal line is drawn through the intersection point of the diagonal and the internal edge of the square, the original golden rectangle and the two scaled copies along the diagonal have linear sizes in the ratios ::, the square and rectangle opposite the diagonal both have areas equal to . [10]
A root rectangle is a rectangle in which the ratio of the longer side to the shorter is the square root of an integer, such as √ 2, √ 3, etc. [2] The root-2 rectangle (ACDK in Fig. 10) is constructed by extending two opposite sides of a square to the length of the square's diagonal. The root-3 rectangle is constructed by extending the two ...
There are 2 dihedral subgroups: Dih 2, Dih 1, and 3 cyclic subgroups: Z 4, Z 2, and Z 1. A square is a special case of many lower symmetry quadrilaterals: A rectangle with two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A parallelogram with one right angle and two adjacent equal sides; A rhombus with a ...
Note that the two opposite sides in these formulas are not the two that the bimedian connects. In a convex quadrilateral, there is the following dual connection between the bimedians and the diagonals: [29] The two bimedians have equal length if and only if the two diagonals are perpendicular.
The diagonals of a rhombus intersect at equal angles, while the diagonals of a rectangle are equal in length. The figure formed by joining the midpoints of the sides of a rhombus is a rectangle , and vice versa.
Given an Euler brick with edge-lengths (a, b, c), the triple (bc, ac, ab) constitutes an Euler brick as well. [1]: p. 106 Exactly one edge and two face diagonals of a primitive Euler brick are odd. At least two edges of an Euler brick are divisible by 3. [1]: p. 106 At least two edges of an Euler brick are divisible by 4. [1]: p. 106