Search results
Results From The WOW.Com Content Network
Since the late 1990s, the execution speed of Java programs improved significantly via introduction of just-in-time compilation (JIT) (in 1997 for Java 1.1), [2] [3] [4] the addition of language features supporting better code analysis, and optimizations in the JVM (such as HotSpot becoming the default for Sun's JVM in 2000).
For this reason, MIPS has become not a measure of instruction execution speed, but task performance speed compared to a reference. In the late 1970s, minicomputer performance was compared using VAX MIPS , where computers were measured on a task and their performance rated against the VAX-11/780 that was marketed as a 1 MIPS machine.
This is a list of the instructions that make up the Java bytecode, an abstract machine language that is ultimately executed by the Java virtual machine. [1] The Java bytecode is generated from languages running on the Java Platform, most notably the Java programming language.
The Jazelle instruction set is well documented as Java bytecode.However, ARM has not released details on the exact execution environment details; the documentation provided with Sun's HotSpot Java Virtual Machine goes as far as to state: "For the avoidance of doubt, distribution of products containing software code to exercise the BXJ instruction and enable the use of the ARM Jazelle ...
Loop unrolling, also known as loop unwinding, is a loop transformation technique that attempts to optimize a program's execution speed at the expense of its binary size, which is an approach known as space–time tradeoff. The transformation can be undertaken manually by the programmer or by an optimizing compiler.
Java bytecode is the instruction set of the Java virtual machine (JVM), the language to which Java and other JVM-compatible source code is compiled. [1] Each instruction is represented by a single byte , hence the name bytecode , making it a compact form of data .
For example, with six executions units, six new instructions are fetched in stage 1 only after the six previous instructions finish at stage 5, therefore on average the number of clock cycles it takes to execute an instruction is 5/6 (CPI = 5/6 < 1). To get better CPI values with pipelining, there must be at least two execution units.
While early generations of CPUs carried out all the steps to execute an instruction sequentially, modern CPUs can do many things in parallel. As it is impossible to just keep doubling the speed of the clock, instruction pipelining and superscalar processor design have evolved so CPUs can use a variety of execution units in parallel - looking ahead through the incoming instructions in order to ...