Search results
Results From The WOW.Com Content Network
Two specific enzymes participate on the carbon monoxide side of the pathway: CO dehydrogenase and acetyl-CoA synthase. The former catalyzes the reduction of the CO 2 and the latter combines the resulting CO with a methyl group to give acetyl-CoA. [1] [2] Some anaerobic bacteria use the Wood–Ljungdahl pathway in reverse to break down acetate.
The succinate dehydrogenase complex showing several cofactors, including flavin, iron–sulfur centers, and heme.. A cofactor is a non-protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst (a catalyst is a substance that increases the rate of a chemical reaction).
Function: Amylase is an enzyme that is responsible for the breaking of the bonds in starches, polysaccharides, and complex carbohydrates to be turned into simple sugars that will be easier to absorb. Clinical Significance: Amylase also has medical history in the use of Pancreatic Enzyme Replacement Therapy (PERT). One of the components is ...
Biosynthesis, i.e., chemical synthesis occurring in biological contexts, is a term most often referring to multi-step, enzyme-catalyzed processes where chemical substances absorbed as nutrients (or previously converted through biosynthesis) serve as enzyme substrates, with conversion by the living organism either into simpler or more complex ...
In molecular biology, the citrate synthase family of proteins includes the enzymes citrate synthase EC 2.3.3.1, and the related enzymes 2-methylcitrate synthase EC 2.3.3.5 and ATP citrate lyase EC 2.3.3.8. Citrate synthase is a member of a small family of enzymes that can directly form a carbon-carbon bond without the presence of metal ion ...
Thymidylate synthase is an enzyme of about 30 to 35 kDa in most species except in protozoan and plants where it exists as a bifunctional enzyme that includes a dihydrofolate reductase domain. [8] A cysteine residue is involved in the catalytic mechanism (it covalently binds the 5,6-dihydro-dUMP intermediate).
The role of the ACS enzyme is to combine acetate and Coenzyme A to form acetyl-CoA, however its significance is much larger. The most well known function of the product from this enzymatic reaction is the use of acetyl-CoA in the role of the TCA cycle as well as in the production of fatty acid.
Palmitoyl-CoA hydrolase (EC 3.1.2.2) is an enzyme in the family of hydrolases that specifically acts on thioester bonds. It catalyzes the hydrolysis of long chain fatty acyl thioesters of acyl carrier protein or coenzyme A to form free fatty acid and the corresponding thiol: palmitoyl-CoA + H 2 O = CoA + palmitate