When.com Web Search

  1. Ads

    related to: laws of exponents multiplication worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Laws_of_exponents

    A field is an algebraic structure in which multiplication, addition, subtraction, and division are defined and satisfy the properties that multiplication is associative and every nonzero element has a multiplicative inverse. This implies that exponentiation with integer exponents is well-defined, except for nonpositive powers of 0.

  3. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of their base. [2] Thus 3 + 5 2 = 28 and 3 × 5 2 = 75. These conventions exist to avoid notational ambiguity while allowing notation to remain brief. [4]

  4. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}

  5. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.

  6. Ordinal arithmetic - Wikipedia

    en.wikipedia.org/wiki/Ordinal_arithmetic

    In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation.Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion.

  7. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    In Lie algebras, the multiplication satisfies Jacobi identity instead of the associative law; this allows abstracting the algebraic nature of infinitesimal transformations. Other examples are quasigroup, quasifield, non-associative ring, and commutative non-associative magmas.