Search results
Results From The WOW.Com Content Network
By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions. In these reactions, the conjugate acid of the carbonyl group is a better electrophile than the neutral
In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group (−C(=O)−OH) [1] attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO 2 H, sometimes as R−C(O)OH with R referring to an organyl group (e.g., alkyl, alkenyl, aryl), or hydrogen, or other groups ...
The oxidation of primary alcohols to carboxylic acids can be carried out using a variety of reagents, but O 2 /air and nitric acid dominate as the oxidants on a commercial scale. Large scale oxidations of this type are used for the conversion of cyclohexanol alone or as a mixture with cyclohexanone to adipic acid. Similarly cyclododecanol is ...
This method is used to produce propionic acid from ethylene using nickel carbonyl as the catalyst: [2] The above reaction is also referred to as hydroxycarbonylation, in which case hydrocarboxylation refers to the same net converstion but using carbon dioxide in place of CO and H 2 in place of water: [8]
In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. [ 1 ] Ketones , aldehydes , carboxylic acids , esters , amides , and acid halides - some of the most pervasive functional groups , -comprise carbonyl compounds.
Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol). [5] This can be economically viable if the products can be separated and both have a value; the commercial conversion of furfural into furfuryl alcohol and 2-furoic acid is an example of this ...
The Koch reaction is an organic reaction for the synthesis of tertiary carboxylic acids from alcohols or alkenes and carbon monoxide.Some commonly industrially produced Koch acids include pivalic acid, 2,2-dimethylbutyric acid and 2,2-dimethylpentanoic acid. [1]
The hydroxide anion adds to the carbonyl group of the ester. The immediate product is called an orthoester. Saponification part I. Expulsion of the alkoxide generates a carboxylic acid: Saponification part II. The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol: