When.com Web Search

  1. Ad

    related to: absolute value inequalities video

Search results

  1. Results From The WOW.Com Content Network
  2. Fatou–Lebesgue theorem - Wikipedia

    en.wikipedia.org/wiki/Fatou–Lebesgue_theorem

    The second inequality is the elementary inequality between and . The last inequality follows by applying reverse Fatou lemma , i.e. applying the Fatou lemma to the non-negative functions g − f n {\displaystyle g-f_{n}} , and again (up to sign) cancelling the finite ∫ X g d μ {\displaystyle \int _{X}g\,d\mu } term.

  3. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...

  4. Estimation lemma - Wikipedia

    en.wikipedia.org/wiki/Estimation_lemma

    In mathematics the estimation lemma, also known as the ML inequality, gives an upper bound for a contour integral. If f is a complex -valued, continuous function on the contour Γ and if its absolute value | f ( z ) | is bounded by a constant M for all z on Γ , then

  5. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    The absolute value | | is a norm on the vector space formed by the real or complex numbers. The complex numbers form a one-dimensional vector space over themselves and a two-dimensional vector space over the reals; the absolute value is a norm for these two structures.

  6. Absolute value (algebra) - Wikipedia

    en.wikipedia.org/wiki/Absolute_value_(algebra)

    The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).

  7. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution

  8. Video Showing the Huge Gap Between Super Rich and ... - AOL

    www.aol.com/news/on-wealth-inequality-in-america...

    "Wealth Inequality in America," a six-minute video produced by a YouTube user named "Politizane," casts an interesting angle on the plummeting savings rate. Set to depressing piano music and ...

  9. Positive and negative parts - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative_parts

    The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.