Search results
Results From The WOW.Com Content Network
The free will theorem states: Given the axioms, if the choice about what measurement to take is not a function of the information accessible to the experimenters (free will assumption), then the results of the measurements cannot be determined by anything previous to the experiments. That is an "outcome open" theorem:
In combinatorics on words, Fine and Wilf's theorem is a fundamental result describing what happens when a long-enough word has two different periods (i.e., distances at which its letters repeat). [ 1 ] [ 2 ] Informally, the conclusion is that such words w {\displaystyle w} have also a third, shorter period.
[35]: 247-248 The free will theorem of John H. Conway and Simon B. Kochen further establishes that if we have free will, then quantum particles also possess free will. [ 36 ] [ 37 ] This means that starting from the assumption that humans have free will, it is possible to pinpoint the origin of their free will in the quantum particles that ...
1974 The Gorenstein–Harada theorem classifying finite groups of sectional 2-rank at most 4 was 464 pages long. 1976 Eisenstein series. Langlands's proof of the functional equation for Eisenstein series was 337 pages long. 1983 Trichotomy theorem. Gorenstein and Lyons's proof for the case of rank at least 4 was 731 pages long, and Aschbacher's ...
The theorem of Du Bois-Reymond asserts that this weak form implies the strong form. If L {\displaystyle L} has continuous first and second derivatives with respect to all of its arguments, and if ∂ 2 L ∂ f ′ 2 ≠ 0 , {\displaystyle {\frac {\partial ^{2}L}{\partial f'^{2}}}\neq 0,} then f {\displaystyle f} has two continuous derivatives ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The modern proof of the strong law is more complex than that of the weak law, and relies on passing to an appropriate subsequence. [17] The strong law of large numbers can itself be seen as a special case of the pointwise ergodic theorem. This view justifies the intuitive interpretation of the expected value (for Lebesgue integration only) of a ...
Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of ...