Search results
Results From The WOW.Com Content Network
There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...
Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [ citation needed ] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).
Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate be transported the mitochondria in order to be oxidized by the citric acid cycle.
Most hemocyanins bind with oxygen non-cooperatively and are roughly one-fourth as efficient as hemoglobin at transporting oxygen per amount of blood. Hemoglobin binds oxygen cooperatively due to steric conformation changes in the protein complex , which increases hemoglobin's affinity for oxygen when partially oxygenated.
The binding of the first oxygen molecule induces change in the shape of the hemoglobin that increases its ability to bind to the other three oxygen molecules. In the presence of dissolved carbon dioxide, the pH of the blood changes; this causes another change in the shape of hemoglobin, which increases its ability to bind carbon dioxide and ...
Hemocyanins carry oxygen in the blood of most mollusks, and some arthropods such as the horseshoe crab. They are second only to hemoglobin in biological popularity of use in oxygen transport. On oxygenation the two copper(I) atoms at the active site are oxidized to copper(II) and the dioxygen molecules are reduced to peroxide, O 2− 2. [14] [15]
Coat complexes that have been well characterized so far include coat protein-I (COP-I), COP-II, and clathrin. [24] [25] Clathrin coats are involved in two crucial transport steps: (i) receptor-mediated and fluid-phase endocytosis from the plasma membrane to early endosome and (ii) transport from the TGN to endosomes. In endocytosis, the ...
The average red blood cell contains 250 million hemoglobin molecules. [7] Hemoglobin contains a globin protein unit with four prosthetic heme groups (hence the name heme-o-globin); each heme is capable of reversibly binding with one gaseous molecule (oxygen, carbon monoxide, cyanide, etc.), [8] therefore a typical red blood cell may carry up to one billion gas molecules.