Search results
Results From The WOW.Com Content Network
In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section ( ellipse , parabola , or hyperbola ) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of ...
Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r = 2, the blue elliptic cone aligned with the vertical z-axis represents μ=cosh(1) and the yellow elliptic cone aligned with the (green) x-axis corresponds to ν 2 = 2/3.
Each grid line is a spherical conic. According to Peirce, his projection has the following properties (Peirce, 1879): The sphere is presented in a square. The part where the exaggeration of scale amounts to double that at the centre is only 9% of the area of the sphere, against 13% for the Mercator projection and 50% for the stereographic ...
Download as PDF; Printable version; In other projects ... Sequential analysis-- Sequential closure operator ... - Spherical code-- Spherical conic-- Spherical contact ...
If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...
Download as PDF; Printable version ... hide. A spherical cone may mean: a hypercone in 4D; a spherical sector in 3D; See also. Spherical conic This page was last ...
Aeronautical chart on Lambert conformal conic projection with standard parallels at 33°N and 45°N. A Lambert conformal conic projection (LCC) is a conic map projection used for aeronautical charts, portions of the State Plane Coordinate System, and many national and regional mapping systems.
The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...