When.com Web Search

  1. Ad

    related to: chlorophyll absorption of light energy

Search results

  1. Results From The WOW.Com Content Network
  2. Chlorophyll a - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll_a

    Chlorophyll a in the reaction center is the only pigment to pass boosted electrons to an acceptor (modified from 2). Absorption of light by photosynthetic pigments converts photons into chemical energy. Light energy radiating onto the chloroplast strikes the pigments in the thylakoid membrane and excites their

  3. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)

  4. Chlorophyll - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll

    Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. [2] Its name is derived from the Greek words χλωρός (khloros, "pale green") and φύλλον (phyllon, "leaf"). [3] Chlorophyll allows plants to absorb energy from light.

  5. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    Due to the presence of chlorophyll a, as opposed to bacteriochlorophyll, Photosystem II absorbs light at a shorter wavelength. The pair of chlorophyll molecules at the reaction center are often referred to as P680. [1] When the photon has been absorbed, the resulting high-energy electron is transferred to a nearby pheophytin molecule.

  6. Photosynthetic pigment - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_pigment

    Chlorophyll a is the most common of the six, present in every plant that performs photosynthesis. Each pigment absorbs light more efficiently in a different part of the electromagnetic spectrum. Chlorophyll a absorbs well in the ranges of 400–450 nm and at 650–700 nm; chlorophyll b at 450–500 nm and at 600–650 nm. Xanthophyll absorbs ...

  7. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The light-harvesting system of PSI uses multiple copies of the same transmembrane proteins used by PSII. The energy of absorbed light (in the form of delocalized, high-energy electrons) is funneled into the reaction center, where it excites special chlorophyll molecules (P700, with maximum light absorption at 700 nm) to a higher energy level.

  8. Photosynthetically active radiation - Wikipedia

    en.wikipedia.org/wiki/Photosynthetically_active...

    Top: Absorption spectra for chlorophyll-A, chlorophyll-B, and carotenoids extracted in a solution. Bottom: PAR action spectrum (oxygen evolution per incident photon) of an isolated chloroplast. Chlorophyll, the most abundant plant pigment, is most efficient in capturing red and blue light.

  9. Light-harvesting complexes of green plants - Wikipedia

    en.wikipedia.org/wiki/Light-harvesting_complexes...

    The light-harvesting complex (or antenna complex; LH or LHC) is an array of protein and chlorophyll molecules embedded in the thylakoid membrane of plants and cyanobacteria, which transfer light energy to one chlorophyll a molecule at the reaction center of a photosystem. The antenna pigments are predominantly chlorophyll b, xanthophylls, and ...