Search results
Results From The WOW.Com Content Network
Solving applications dealing with non-uniform circular motion involves force analysis. With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration.
The centrifugal force balances the friction between wheels and the road, making the car stationary in this non-inertial frame. A classic example of a fictitious force in circular motion is the experiment of rotating spheres tied by a cord and spinning around their centre of mass. In this case, the identification of a rotating, non-inertial ...
A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only frames rotating about a fixed axis. For more general rotations, see Euler angles.)
These results agree with those above for nonuniform circular motion. See also the article on non-uniform circular motion. If this acceleration is multiplied by the particle mass, the leading term is the centripetal force and the negative of the second term related to angular acceleration is sometimes called the Euler force. [22]
In classical mechanics it is often possible to explain the motion of bodies in non-inertial reference frames by introducing additional fictitious forces (also called inertial forces, pseudo-forces, [5] and d'Alembert forces) to Newton's second law. Common examples of this include the Coriolis force and the centrifugal force.
For example, an analysis of the motion of an object in an airliner in flight could be made relative to the airliner, to the surface of the Earth, or even to the Sun. [12] A reference frame that is at rest (or one that moves with no rotation and at constant velocity) relative to the "fixed stars" is generally taken to be an inertial frame. Any ...
For example, the centrifugal force that appears to emanate from the axis of rotation in a rotating frame increases with distance from the axis. All observers agree on the real forces, F; only non-inertial observers need fictitious forces. The laws of physics in the inertial frame are simpler because unnecessary forces are not present.
In a non-uniform field, gravitational effects such as potential energy, force, and torque can no longer be calculated using the center of mass alone. In particular, a non-uniform gravitational field can produce a torque on an object, even about an axis through the center of mass. The center of gravity seeks to explain this effect.