Ads
related to: q-series math worksheets pdf cubes download
Search results
Results From The WOW.Com Content Network
The graph Q 0 consists of a single vertex, while Q 1 is the complete graph on two vertices. Q 2 is a cycle of length 4. The graph Q 3 is the 1-skeleton of a cube and is a planar graph with eight vertices and twelve edges. The graph Q 4 is the Levi graph of the Möbius configuration. It is also the knight's graph for a toroidal chessboard.
In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series x n is called hypergeometric if the ratio of successive terms x n+1 /x n is a rational function of n.
The most important features of these cubes are the following: For each integer k, Δ k partitions R n. All cubes in Δ k have the same sidelength, namely 2 −k. If the interiors of two cubes Q and R in Δ have nonempty intersection, then either Q is contained in R or R is contained in Q.
The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. [1] q-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit q → 1 is often formal, as q is often discrete-valued (for example, it may represent a ...
The q-Pochhammer symbol is a major building block in the construction of q-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series.
Equivalently, an elementary cube is any translate of a unit cube [,] embedded in Euclidean space (for some , {} with ). [3] A set X ⊆ R d {\displaystyle X\subseteq \mathbf {R} ^{d}} is a cubical complex (or cubical set ) if it can be written as a union of elementary cubes (or possibly, is homeomorphic to such a set).