When.com Web Search

  1. Ads

    related to: q-series math worksheets pdf cubes download

Search results

  1. Results From The WOW.Com Content Network
  2. Hypercube graph - Wikipedia

    en.wikipedia.org/wiki/Hypercube_graph

    The graph Q 0 consists of a single vertex, while Q 1 is the complete graph on two vertices. Q 2 is a cycle of length 4. The graph Q 3 is the 1-skeleton of a cube and is a planar graph with eight vertices and twelve edges. The graph Q 4 is the Levi graph of the Möbius configuration. It is also the knight's graph for a toroidal chessboard.

  3. Basic hypergeometric series - Wikipedia

    en.wikipedia.org/wiki/Basic_hypergeometric_series

    In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series x n is called hypergeometric if the ratio of successive terms x n+1 /x n is a rational function of n.

  4. Dyadic cubes - Wikipedia

    en.wikipedia.org/wiki/Dyadic_cubes

    The most important features of these cubes are the following: For each integer k, Δ k partitions R n. All cubes in Δ k have the same sidelength, namely 2 −k. If the interiors of two cubes Q and R in Δ have nonempty intersection, then either Q is contained in R or R is contained in Q.

  5. q-analog - Wikipedia

    en.wikipedia.org/wiki/Q-analog

    The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. [1] q-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit q → 1 is often formal, as q is often discrete-valued (for example, it may represent a ...

  6. q-Pochhammer symbol - Wikipedia

    en.wikipedia.org/wiki/Q-Pochhammer_symbol

    The q-Pochhammer symbol is a major building block in the construction of q-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series.

  7. Cubical complex - Wikipedia

    en.wikipedia.org/wiki/Cubical_complex

    Equivalently, an elementary cube is any translate of a unit cube [,] embedded in Euclidean space (for some , {} with ). [3] A set X ⊆ R d {\displaystyle X\subseteq \mathbf {R} ^{d}} is a cubical complex (or cubical set ) if it can be written as a union of elementary cubes (or possibly, is homeomorphic to such a set).