Search results
Results From The WOW.Com Content Network
For example, in base-10 the number 1/2 has a terminating expansion (0.5) while the number 1/3 does not (0.333...). In base-2 only rationals with denominators that are powers of 2 (such as 1/2 or 3/16) are terminating. Any rational with a denominator that has a prime factor other than 2 will have an infinite binary expansion.
The leading digit is between 0 and 9 (3 or 4 binary bits), and the rest of the significand uses the densely packed decimal (DPD) encoding. The leading 2 bits of the exponent and the leading digit (3 or 4 bits) of the significand are combined into the five bits that follow the sign bit. This is followed by a fixed-offset exponent continuation field.
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32). (Subscripts indicate the number base.) Analogous to scientific notation, where numbers are written to have a single non-zero digit to the left of the decimal point, we rewrite this number so it has a single 1 bit to the left of the "binary point". We simply ...
E.g. binary128 has approximately the same precision as a 34 digit decimal number. log 10 MAXVAL is a measure of the range of the encoding. Its integer part is the largest exponent shown on the output of a value in scientific notation with one leading digit in the significand before the decimal point (e.g. 1.698·10 38 is near the largest value ...
If the hardware has instructions to compute half-precision math, it is often faster than single or double precision. If the system has SIMD instructions that can handle multiple floating-point numbers within one instruction, half precision can be twice as fast by operating on twice as many numbers simultaneously. [13]
Because the significand is not normalized, most values with less than 34 significant digits have multiple possible representations; 1 × 10 2 = 0.1 × 10 3 = 0.01 × 10 4, etc. This set of representations for a same value is called a cohort. Zero has 12288 possible representations (24576 if both signed zeros are included, in two different cohorts).
A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).