When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    Here we employ a method called "indirect expansion" to expand the given function. This method uses the known Taylor expansion of the exponential function. In order to expand (1 + x)e x as a Taylor series in x, we use the known Taylor series of function e x:

  3. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The formula for the exponential results from reducing the powers of G in the series expansion and identifying the respective series coefficients of G 2 and G with −cos(θ) and sin(θ) respectively. The second expression here for e Gθ is the same as the expression for R ( θ ) in the article containing the derivation of the generator , R ( θ ...

  4. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Now its Taylor series centered at z 0 converges on any disc B(z 0, r) with r < |z − z 0 |, where the same Taylor series converges at z ∈ C. Therefore, Taylor series of f centered at 0 converges on B(0, 1) and it does not converge for any z ∈ C with |z| > 1 due to the poles at i and −i.

  5. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    If the analytic function f has the Taylor expansion = + + + then a matrix function () can be defined by substituting x by a square matrix: powers become matrix powers, additions become matrix sums and multiplications by coefficients become scalar multiplications.

  6. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  7. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The power series definition of the exponential function makes sense for square matrices (for which the function is called the matrix exponential) and more generally in any unital Banach algebra B. In this setting, e 0 = 1, and e x is invertible with inverse e −x for any x in B. If xy = yx, then e x + y = e x e y, but this identity can fail ...

  8. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  9. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.