When.com Web Search

  1. Ad

    related to: graphing functions using derivatives powerpoint

Search results

  1. Results From The WOW.Com Content Network
  2. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    (The axes of the graph do not use a 1:1 scale.) The derivative of a function is then simply the slope of this tangent line. [b] Even though the tangent line only touches a single point at the point of tangency, it can be approximated by a line that goes through two points. This is known as a secant line. If the two points that the secant line ...

  3. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  5. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  6. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    [49]: 6 If the graph of the function is not a straight line, however, then the change in y divided by the change in x varies. Derivatives give an exact meaning to the notion of change in output concerning change in input. To be concrete, let f be a function, and fix a point a in the domain of f. (a, f(a)) is a

  7. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  8. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    If we consider functions of the form () = where is any complex number and is a complex number in a slit complex plane that excludes the branch point of 0 and any branch cut connected to it, and we use the conventional multivalued definition := ⁡ (⁡), then it is straightforward to show that, on each branch of the complex logarithm, the same ...

  9. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken. For example, the second partial derivatives of a function f(x, y) are: [6]