When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Line-cylinder intersection - Wikipedia

    en.wikipedia.org/wiki/Line-cylinder_intersection

    Green line has two intersections. Yellow line lies tangent to the cylinder, so has infinitely many points of intersection. Line-cylinder intersection is the calculation of any points of intersection, given an analytic geometry description of a line and a cylinder in 3d space. An arbitrary line and cylinder may have no intersection at all.

  3. TargetLink - Wikipedia

    en.wikipedia.org/wiki/TargetLink

    TargetLink requires an existing MATLAB/Simulink model to work on. TargetLink generates both ANSI-C and production code optimized for specific processors. It also supports the generation of AUTOSAR-compliant code for software components for the automotive sector. The management of all relevant information for code generation takes place in a ...

  4. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    First we consider the intersection of two lines L 1 and L 2 in two-dimensional space, with line L 1 being defined by two distinct points (x 1, y 1) and (x 2, y 2), and line L 2 being defined by two distinct points (x 3, y 3) and (x 4, y 4). [2] The intersection P of line L 1 and L 2 can be defined using determinants.

  5. Line–sphere intersection - Wikipedia

    en.wikipedia.org/wiki/Line–sphere_intersection

    The three possible line-sphere intersections: 1. No intersection. 2. Point intersection. 3. Two point intersection. In analytic geometry, a line and a sphere can intersect in three ways: No intersection at all; Intersection in exactly one point; Intersection in two points.

  6. Distance from a point to a line - Wikipedia

    en.wikipedia.org/.../Distance_from_a_point_to_a_line

    The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...

  7. Multiple line segment intersection - Wikipedia

    en.wikipedia.org/wiki/Multiple_line_segment...

    The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.

  8. Point in polygon - Wikipedia

    en.wikipedia.org/wiki/Point_in_polygon

    A similar problem arises with horizontal segments that happen to fall on the ray. The issue is solved as follows: If the intersection point is a vertex of a tested polygon side, then the intersection counts only if the other vertex of the side lies below the ray.

  9. Bresenham's line algorithm - Wikipedia

    en.wikipedia.org/wiki/Bresenham's_line_algorithm

    Notice that the points (2,1) and (2,3) are on opposite sides of the line and (,) evaluates to positive or negative. A line splits a plane into halves and the half-plane that has a negative f ( x , y ) {\displaystyle f(x,y)} can be called the negative half-plane, and the other half can be called the positive half-plane.