When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dihedral angle - Wikipedia

    en.wikipedia.org/wiki/Dihedral_angle

    A dihedral angle is the angle between two intersecting planes or half-planes. It is a plane angle formed on a third plane, perpendicular to the line of intersection between the two planes or the common edge between the two half-planes. In higher dimensions, a dihedral angle represents the angle between two hyperplanes.

  3. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    The dihedral angles for the edge-transitive polyhedra are: Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle

  4. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The cosine rule may be used to give the angles A, B, and C but, to avoid ambiguities, the half angle formulae are preferred. Case 2: two sides and an included angle given (SAS). The cosine rule gives a and then we are back to Case 1. Case 3: two sides and an opposite angle given (SSA). The sine rule gives C and then we have Case 7. There are ...

  5. Spherical lune - Wikipedia

    en.wikipedia.org/wiki/Spherical_lune

    This geometry also defines lunes of greater angles: {2} π-θ, and {2} 2π-θ. In spherical geometry, a spherical lune (or biangle) is an area on a sphere bounded by two half great circles which meet at antipodal points. [1] It is an example of a digon, {2} θ, with dihedral angle θ. [2] The word "lune" derives from luna, the Latin word for Moon.

  6. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    The formula for the magnitude of the solid angle in steradians is =, where is the area (of any shape) on the surface of the sphere and is the radius of the sphere. Solid angles are often used in astronomy, physics, and in particular astrophysics. The solid angle of an object that is very far away is roughly proportional to the ratio of area to ...

  7. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    This fact can be used to calculate the dihedral angles themselves for a regular or edge-symmetric ideal polyhedron (in which all these angles are equal), by counting how many edges meet at each vertex: an ideal regular tetrahedron, cube or dodecahedron, with three edges per vertex, has dihedral angles = / = (), an ideal regular octahedron or ...

  8. Truncated icosahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_icosahedron

    The dihedral angle of a truncated icosahedron between adjacent hexagonal faces is approximately 138.18°, and that between pentagon-to-hexagon is approximately 142.6°. [ 4 ] The truncated icosahedron is an Archimedean solid , meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in ...

  9. Trigonometry of a tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trigonometry_of_a_tetrahedron

    The 12 face angles - there are three of them for each of the four faces of the tetrahedron. The 6 dihedral angles - associated to the six edges of the tetrahedron, since any two faces of the tetrahedron are connected by an edge. The 4 solid angles - associated to each point of the tetrahedron.