Search results
Results From The WOW.Com Content Network
The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions include: The partial sums (the Taylor polynomials) of the series can be used as approximations of the function ...
In mathematics, the Bernoulli numbers B n are a sequence of rational numbers which occur frequently in analysis.The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain ...
Here is a sample program that computes the factorial of an integer number from 2 to 69. For 5!, if "5 A" is pressed, it gives the result, 120. Unlike the SR-52, the TI-58 and TI-59 do not have the factorial function built-in, but do support it through the software module which was delivered with the calculator.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The immediate execution mode of operation (also known as single-step, algebraic entry system (AES) [7] or chain calculation mode) is commonly employed on most general-purpose calculators. In most simple four-function calculators, such as the Windows calculator in Standard mode and those included with most early operating systems, each binary ...
Texas Instruments TI-84 Plus, the most successful graphing calculator in terms of sales. A graphing calculator (also graphics calculator or graphic display calculator) is a handheld computer that is capable of plotting graphs, solving simultaneous equations, and performing other tasks with variables.
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
The 68k series makes a distinction between programs and functions. Functions are just like programs except that they do not allow statements that perform I/O, including modifying non-local variables, and they return a value, which in the absence of an explicit Return statement is the last expression evaluated.