When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    The representation of a rotation as a quaternion (4 numbers) is more compact than the representation as an orthogonal matrix (9 numbers). Furthermore, for a given axis and angle, one can easily construct the corresponding quaternion, and conversely, for a given quaternion one can easily read off the axis and the angle.

  3. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions. This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the ...

  4. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    The group Spin(3) is isomorphic to the special unitary group SU(2); it is also diffeomorphic to the unit 3-sphere S 3 and can be understood as the group of versors (quaternions with absolute value 1). The connection between quaternions and rotations, commonly exploited in computer graphics, is explained in quaternions and spatial rotations.

  5. Charts on SO (3) - Wikipedia

    en.wikipedia.org/wiki/Charts_on_SO(3)

    The group Spin(3) is isomorphic to the special unitary group SU(2); it is also diffeomorphic to the unit 3-sphere S 3 and can be understood as the group of unit quaternions (i.e. those with absolute value 1). The connection between quaternions and rotations, commonly exploited in computer graphics, is explained in quaternions and spatial rotations.

  6. Applications of dual quaternions to 2D geometry - Wikipedia

    en.wikipedia.org/wiki/Applications_of_dual...

    In this article, certain applications of the dual quaternion algebra to 2D geometry are discussed. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which will later be called the planar quaternions. The planar quaternions make up a four-dimensional algebra over the real numbers.

  7. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    Therefore, a = 0 and b 2 + c 2 + d 2 = 1. In other words: A quaternion squares to −1 if and only if it is a vector quaternion with norm 1. By definition, the set of all such vectors forms the unit sphere. Only negative real quaternions have infinitely many square roots. All others have just two (or one in the case of 0). [citation needed] [d]

  8. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    where v is the rotation vector treated as a quaternion. A single multiplication by a versor, either left or right, is itself a rotation, but in four dimensions. Any four-dimensional rotation about the origin can be represented with two quaternion multiplications: one left and one right, by two different unit quaternions.

  9. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.