When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Imputation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Imputation_(statistics)

    Mean imputation can be carried out within classes (i.e. categories such as gender), and can be expressed as ^ = ¯ where ^ is the imputed value for record and ¯ is the sample mean of respondent data within some class . This is a special case of generalized regression imputation:

  3. Predictive mean matching - Wikipedia

    en.wikipedia.org/wiki/Predictive_mean_matching

    Predictive mean matching (PMM) [1] is a widely used [2] statistical imputation method for missing values, first proposed by Donald B. Rubin in 1986 [3] and R. J. A. Little in 1988. [ 4 ] It aims to reduce the bias introduced in a dataset through imputation, by drawing real values sampled from the data. [ 5 ]

  4. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    The data imputation procedure with NMF can be composed of two steps. First, when the NMF components are known, Ren et al. (2020) proved that impact from missing data during data imputation ("target modeling" in their study) is a second order effect.

  5. Nearest neighbour algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_algorithm

    The nearest neighbour algorithm was one of the first algorithms used to solve the travelling salesman problem approximately. In that problem, the salesman starts at a random city and repeatedly visits the nearest city until all have been visited.

  6. Matrix completion - Wikipedia

    en.wikipedia.org/wiki/Matrix_completion

    Matrix completion is the task of filling in the missing entries of a partially observed matrix, which is equivalent to performing data imputation in statistics. A wide range of datasets are naturally organized in matrix form.

  7. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  8. Imputation and Variance Estimation Software - Wikipedia

    en.wikipedia.org/wiki/Imputation_and_Variance...

    Imputation and Variance Estimation Software (IVEware) is a collection of routines written under various platforms and packaged to perform multiple imputations, variance estimation (or standard error) and, in general, draw inferences from incomplete data. It can also be used to perform analysis without any missing data.

  9. Nested sampling algorithm - Wikipedia

    en.wikipedia.org/wiki/Nested_sampling_algorithm

    Here is a simple version of the nested sampling algorithm, followed by a description of how it computes the marginal probability density = where is or : Start with N {\displaystyle N} points θ 1 , … , θ N {\displaystyle \theta _{1},\ldots ,\theta _{N}} sampled from prior.