Search results
Results From The WOW.Com Content Network
The canonical Watson-Crick base pairs, G:C and A:T/U as well as most of the non-canonical ones are stabilized by two or more (e.g. 3 in the case of G:C cWW) hydrogen bonds. Justifiably, a significant amount of research on non-canonical base pairs has been carried out towards bench-marking their strengths (interaction energies) and (geometric ...
Wobble base pairs for inosine and guanine. A wobble base pair is a pairing between two nucleotides in RNA molecules that does not follow Watson-Crick base pair rules. [1] The four main wobble base pairs are guanine-uracil (G-U), hypoxanthine-uracil (I-U), hypoxanthine-adenine (I-A), and hypoxanthine-cytosine (I-C).
Non-covalent hydrogen bonds between the bases are shown as dashed lines. The wiggly lines stand for the connection to the pentose sugar and point in the direction of the minor groove. Hydrogen bonding is the chemical interaction that underlies the base-pairing rules described above.
In biology, parts of the DNA double helix that need to separate easily, such as the TATAAT Pribnow box in some promoters, tend to have a high AT content, making the strands easier to pull apart. [29] In the laboratory, the strength of this interaction can be measured by finding the melting temperature T m necessary to break half of the hydrogen ...
The A–T pairing is based on two hydrogen bonds, while the C–G pairing is based on three. In both cases, the hydrogen bonds are between the amine and carbonyl groups on the complementary bases. Nucleobases such as adenine, guanine, xanthine , hypoxanthine , purine, 2,6-diaminopurine , and 6,8-diaminopurine may have formed in outer space as ...
In molecular biology, two nucleotides on opposite complementary DNA or RNA strands that are connected via hydrogen bonds are called a base pair (often abbreviated bp). In the canonical Watson-Crick base pairing, adenine (A) forms a base pair with thymine (T) and guanine (G) forms one with cytosine (C) in DNA.
Non-canonical DNA structures can be perceived as damage by the cell, and recent work has shown an increased prevalence of mutations near non-B-DNA-forming sequences. [37] Some of these mutations are due to the interactions between H-DNA and the enzymes involved in DNA replication and transcription, where H-DNA interferes with these processes ...
Canonical bases may have either a carbonyl or an amine group on the carbons surrounding the nitrogen atom furthest away from the glycosidic bond, which allows them to base pair (Watson-Crick base pairing) via hydrogen bonds (amine with ketone, purine with pyrimidine). Adenine and 2-aminoadenine have one/two amine group(s), whereas thymine has ...