Search results
Results From The WOW.Com Content Network
In plants, selfing can occur as autogamous or geitonogamous pollinations and can have varying fitness affects that show up as autogamy depression. After several generations, inbreeding depression is likely to purge the deleterious alleles from the population because the individuals carrying them have mostly died or failed to reproduce.
Cheetahs are another example of inbreeding. Thousands of years ago, the cheetah went through a population bottleneck that reduced its population dramatically so the animals that are alive today are all related to one another. A consequence from inbreeding for this species has been high juvenile mortality, low fecundity, and poor breeding ...
The root growth of C22 exceeded that of C0 and the ratio of shoot dry mass to root dry mass was reduced by nearly 12%, from 8.0±0.2 to 7.1±0.1 (Table 2). Analysis of yield components revealed that C22 was superior to C0 in grain weight, number of rows per ear, number of grains per row, and total yield per unit area (Table 3).
The disadvantages of self-pollination come from a lack of variation that allows no adaptation to the changing environment or potential pathogen attack. Self-pollination can lead to inbreeding depression caused by expression of deleterious recessive mutations, [2] or to the reduced health of the species, due to the breeding of related specimens ...
Reproductive assurance (fertility assurance) occurs as plants have mechanisms to assure full seed set through selfing when outcross pollen is limiting. It is assumed that self-pollination is beneficial, in spite of potential fitness costs, when there is insufficient pollinator services or outcross pollen from other individuals to accomplish full seed set..
Sequential hermaphroditism (called dichogamy in botany) is one of the two types of hermaphroditism, the other type being simultaneous hermaphroditism. It occurs when the organism's sex changes at some point in its life. [1] A sequential hermaphrodite produces eggs (female gametes) and sperm (male gametes) at different stages in life. [2]
There are only two such loops in this chart, as there are only 2 common ancestors of C and F. The loops are G - C - A - D - F and G - C - B - D - F, both of which have 5 members. Because the common ancestors of the parents (A and B) are not inbred themselves, f A = 0 {\displaystyle f_{A}=0} .
Therefore, just as with the mixed mating model, in the effective selfing model there is only one parameter to be estimated. However this parameter, termed the effective selfing rate, is often a more accurate measure of the proportion of self-fertilisation than the corresponding parameter in the mixed mating model. [1] [2]