Search results
Results From The WOW.Com Content Network
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
A is assumed to be the set of all possible outcomes of an experiment or random trial that has a restricted or reduced sample space. The conditional probability can be found by the quotient of the probability of the joint intersection of events A and B, that is, (), the probability at which A and B occur together, and the probability of B: [2 ...
For example, the probability of the union of the mutually exclusive events and in the random experiment of one coin toss, (), is the sum of probability for and the probability for , () + (). Second, the probability of the sample space Ω {\displaystyle \Omega } must be equal to 1 (which accounts for the fact that, given an execution of the ...
To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive events (events with no common results, such as the events {1,6}, {3}, and {2,4}), the probability that at least one of the events will occur is given by the sum of the probabilities of all the individual events.
The probability that X n = 0 occurs for infinitely many n is equivalent to the probability of the intersection of infinitely many [X n = 0] events. The intersection of infinitely many such events is a set of outcomes common to all of them. However, the sum ΣPr(X n = 0) converges to π 2 /6 ≈ 1.645 < ∞, and so the Borel–Cantelli Lemma ...
The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...
The Newton–Pepys problem is a probability problem concerning the probability of throwing sixes from a certain number of dice. [1] In 1693 Samuel Pepys and Isaac Newton corresponded over a problem posed to Pepys by a school teacher named John Smith. [2] The problem was: Which of the following three propositions has the greatest chance of success?