Search results
Results From The WOW.Com Content Network
In electronics and telecommunications, jitter is the deviation from true periodicity of a presumably periodic signal, often in relation to a reference clock signal. In clock recovery applications it is called timing jitter. [1] Jitter is a significant, and usually undesired, factor in the design of almost all communications links.
Jitter is often measured as a fraction of UI. For example, jitter of 0.01 UI is jitter that moves a signal edge by 1% of the UI duration. The widespread use of UI in jitter measurements comes from the need to apply the same requirements or results to cases of different symbol rates. This can be d
In that approach, the measurement is an integer number of clock cycles, so the measurement is quantized to a clock period. To get finer resolution, a faster clock is needed. The accuracy of the measurement depends upon the stability of the clock frequency. Typically a TDC uses a crystal oscillator reference frequency for good long term stability.
It is used to specify clock stability requirements in telecommunications standards. [1] MTIE measurements can be used to detect clock instability that can cause data loss on a communications channel. [ 2 ]
The most straightforward scheme uses a digital counter and a free-running crystal oscillator to time intervals with 1-clock ambiguity, resulting in output edge jitter of one clock period peak-to-peak relative to an asynchronous trigger. This technique is used in the Quantum Composers and Berkeley Nucleonics instruments.
Clock synchronization is a topic in computer science and engineering that aims to coordinate otherwise independent clocks. Even when initially set accurately, real clocks will differ after some amount of time due to clock drift , caused by clocks counting time at slightly different rates.
In optics, jitter is used to refer to motion that has high temporal frequency relative to the integration/exposure time. This may result from vibration in an assembly or the unstable hand of a photographer. Jitter is typically differentiated from smear, which has a lower frequency relative to the integration time. [1]
Time: The interval between two events present on the worldline of a single clock is called proper time, an important invariant of special relativity. As the origin of the muon at A and the encounter with Earth at D is on the muon's worldline, only a clock comoving with the muon and thus resting in S′ can indicate the proper time T′ 0 =AD.