When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. WKB approximation - Wikipedia

    en.wikipedia.org/wiki/WKB_approximation

    In mathematical physics, the WKB approximation or WKB method is a method for finding approximate solutions to linear differential equations with spatially varying coefficients. It is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded, and ...

  3. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    Input: initial guess x (0) to the solution, (diagonal dominant) matrix A, right-hand side vector b, convergence criterion Output: solution when convergence is reached Comments: pseudocode based on the element-based formula above k = 0 while convergence not reached do for i := 1 step until n do σ = 0 for j := 1 step until n do if j ≠ i then ...

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    [2] Another physical setting for derivation of the wave equation in one space dimension uses Hooke's law. In the theory of elasticity, Hooke's law is an approximation for certain materials, stating that the amount by which a material body is deformed (the strain) is linearly related to the force causing the deformation (the stress).

  6. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    A Padé approximant with numerator of degree m and denominator of degree n is A-stable if and only if m ≤ n ≤ m + 2. [33] The Gauss–Legendre method with s stages has order 2s, so its stability function is the Padé approximant with m = n = s. It follows that the method is A-stable. [34]

  7. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    The real part of the other side is a polynomial in cos x and sin x, in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1. By the same reasoning, sin nx is the imaginary part of the polynomial, in which all powers of sin x are odd and thus, if one factor of sin x is factored out, the remaining ...

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated. x n+1 is a better approximation than x n for the root x of the function f (blue curve) If the tangent line to the curve f(x) at x = x n intercepts the x-axis at x n+1 then the slope is

  9. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The three-point bending test is a classical experiment in mechanics. It represents the case of a beam resting on two roller supports and subjected to a concentrated load applied in the middle of the beam. The shear is constant in absolute value: it is half the central load, P / 2. It changes sign in the middle of the beam.