Ads
related to: absorption lines examples in art projects for elementary rabbit houses
Search results
Results From The WOW.Com Content Network
The Fraunhofer lines are typical spectral absorption lines. Absorption lines are narrow regions of decreased intensity in a spectrum, which are the result of photons being absorbed as light passes from the source to the detector. In the Sun, Fraunhofer lines are a result of gas in the Sun's atmosphere and outer photosphere. These regions have ...
For instance, absorption lines of the gas phase molecule can shift significantly when that molecule is in a liquid or solid phase and interacting more strongly with neighboring molecules. The width and shape of absorption lines are determined by the instrument used for the observation, the material absorbing the radiation and the physical ...
For example, radiation emitted from a distant rotating body, such as a star, will be broadened due to the line-of-sight variations in velocity on opposite sides of the star (this effect usually referred to as rotational broadening). The greater the rate of rotation, the broader the line. Another example is an imploding plasma shell in a Z-pinch.
Spectral line shape or spectral line profile describes the form of an electromagnetic spectrum in the vicinity of a spectral line – a region of stronger or weaker intensity in the spectrum. Ideal line shapes include Lorentzian , Gaussian and Voigt functions, whose parameters are the line position, maximum height and half-width. [ 1 ]
An overview of absorption of electromagnetic radiation.This example shows the general principle using visible light as a specific example. A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines).
In spectroscopy, the Autler–Townes effect (also known as AC Stark effect), is a dynamical Stark effect corresponding to the case when an oscillating electric field (e.g., that of a laser) is tuned in resonance (or close) to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line.
A wide variety of absorption band and line shapes exist, and the analysis of the band or line shape can be used to determine information about the system that causes it. In many cases it is convenient to assume that a narrow spectral line is a Lorentzian or Gaussian , depending respectively on the decay mechanism or temperature effects like ...
In "line-by-line" methods, the change in spectral intensity (dI λ, W/sr/m 2 /μm) is numerically integrated using a wavelength increment small enough (less than 1 nm) to accurately describe the shape of each absorption line. The HITRAN database contains the parameters needed to describe 7.4 million absorption lines for 47 GHGs and 120 ...