When.com Web Search

  1. Ads

    related to: half life of xenon 135 watt lamp

Search results

  1. Results From The WOW.Com Content Network
  2. Xenon-135 - Wikipedia

    en.wikipedia.org/wiki/Xenon-135

    Xenon-135 (135 Xe) is an unstable isotope of xenon with a half-life of about 9.2 hours. 135 Xe is a fission product of uranium and it is the most powerful known neutron -absorbing nuclear poison (2 million barns ; [ 1 ] up to 3 million barns [ 1 ] under reactor conditions [ 2 ] ), with a significant effect on nuclear reactor operation.

  3. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.

  4. Isotopes of xenon - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_xenon

    Xenon-136 is an isotope of xenon that undergoes double beta decay to barium-136 with a very long half-life of 2.11 × 10 21 years, more than 10 orders of magnitude longer than the age of the universe ((13.799 ± 0.021) × 10 9 years). It is being used in the Enriched Xenon Observatory experiment to search for neutrinoless double beta decay.

  5. Neutron poison - Wikipedia

    en.wikipedia.org/wiki/Neutron_poison

    Because 95% of the xenon-135 production is from iodine-135 decay, which has a 6- to 7-hour half-life, the production of xenon-135 remains constant; at this point, the xenon-135 concentration reaches a minimum. The concentration then increases to the equilibrium for the new power level in the same time, roughly 40 to 50 hours.

  6. Xenon - Wikipedia

    en.wikipedia.org/wiki/Xenon

    The ratio of xenon-136 to xenon-135 (or its decay products) can give hints as to the power history of a given reactor and the absence of xenon-136 is a "fingerprint" for nuclear explosions, as xenon-135 is not produced directly but as a product of successive beta decays and thus it cannot absorb any neutrons in a nuclear explosion which occurs ...

  7. Fission product yield - Wikipedia

    en.wikipedia.org/wiki/Fission_product_yield

    The remainder and the unlisted 54.4478% decay with half-lives less than one year into nonradioactive nuclei. This is before accounting for the effects of any subsequent neutron capture; e.g.: 135 Xe capturing a neutron and becoming nearly stable 136 Xe, rather than decaying to 135 Cs which is radioactive with a half-life of 2.3 million years

  8. Xenon arc lamp - Wikipedia

    en.wikipedia.org/wiki/Xenon_arc_lamp

    A xenon arc lamp is a highly specialized type of gas discharge lamp, an electric light that produces light by passing electricity through ionized xenon gas at high pressure. It produces a bright white light to simulate sunlight , with applications in movie projectors in theaters , in searchlights , and for specialized uses in industry and research.

  9. Nuclear fission product - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission_product

    In nuclear reactors both caesium-137 and strontium-90 are found in locations away from the fuel because they're formed by the beta decay of noble gases (xenon-137, with a 3.8-minute half-life, and krypton-90, with a 32-second half-life) which enable them to be deposited away from the fuel, e.g. on control rods.