Search results
Results From The WOW.Com Content Network
The Russian-Soviet mathematician and mechanician Nikolay Gur'yevich Chetaev working at the Kazan Aviation Institute in the 1930s was the first who realized the incredible magnitude of the discovery made by A. M. Lyapunov. The contribution to the theory made by N. G. Chetaev [2] was so significant that many mathematicians, physicists and ...
The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [ 1 ] [ 2 ] In particular, the discrete-time Lyapunov equation (also known as Stein equation ) for X {\displaystyle X} is
In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory .
The Lyapunov–Malkin theorem (named for Aleksandr Lyapunov and Ioel Malkin ) is a mathematical theorem detailing stability of nonlinear systems. [ 1 ] [ 2 ] Theorem
The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.
Download as PDF; Printable version; ... It corresponds roughly to MSC 34Dxx Stability Theory ... Linear stability; Lyapunov function;
Input-to-state stability of the systems based on time-invariant ordinary differential equations is a quite developed theory, see a recent monograph. [6] However, ISS theory of other classes of systems is also being investigated for time-variant ODE systems [20] and hybrid systems.
In stability theory and nonlinear control, Massera's lemma, named after José Luis Massera, deals with the construction of the Lyapunov function to prove the stability of a dynamical system. [1] The lemma appears in (Massera 1949, p. 716) as the first lemma in section 12, and in more general form in (Massera 1956, p. 195) as lemma 2. In 2004 ...