When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    An orthonormal basis is a basis whose vectors are both orthogonal and normalized (they are unit vectors). A conformal linear transformation preserves angles and distance ratios, meaning that transforming orthogonal vectors by the same conformal linear transformation will keep those vectors orthogonal.

  3. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  4. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval as the domain , the bilinear form may be the integral of the product of functions over the interval:

  5. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Orthogonal transformations in two- or three-dimensional Euclidean space are stiff rotations, reflections, or combinations of a rotation and a reflection (also known as improper rotations). Reflections are transformations that reverse the direction front to back, orthogonal to the mirror plane, like (real-world) mirrors do.

  6. Orthogonality principle - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_principle

    Suppose x is a Gaussian random variable with mean m and variance . Also suppose we observe a value y = x + w , {\displaystyle y=x+w,} where w is Gaussian noise which is independent of x and has mean 0 and variance σ w 2 . {\displaystyle \sigma _{w}^{2}.}

  7. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero. Similarly, the construction of the norm of a vector is motivated by a desire to extend the intuitive notion of the length of a vector to higher-dimensional spaces.

  8. Orthogonal instruction set - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_instruction_set

    In computer engineering, an orthogonal instruction set is an instruction set architecture where all instruction types can use all addressing modes. It is " orthogonal " in the sense that the instruction type and the addressing mode may vary independently.

  9. Orthogonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonalization

    In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...