When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.

  3. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Thus each orthogonal group falls into two pieces; and because the projection map splits, O(n) is a semidirect product of SO(n) by O(1). In practical terms, a comparable statement is that any orthogonal matrix can be produced by taking a rotation matrix and possibly negating one of its columns, as we saw with 2 × 2 matrices.

  4. Orthogonality (programming) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(programming)

    It is associated with simplicity; the more orthogonal the design, the fewer exceptions. This makes it easier to learn, read and write programs in a programming language [citation needed]. The meaning of an orthogonal feature is independent of context; the key parameters are symmetry and consistency (for example, a pointer is an orthogonal concept).

  5. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  6. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Orthogonal transformations in two- or three-dimensional Euclidean space are stiff rotations, reflections, or combinations of a rotation and a reflection (also known as improper rotations). Reflections are transformations that reverse the direction front to back, orthogonal to the mirror plane, like (real-world) mirrors do.

  7. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...

  8. Orthogonal instruction set - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_instruction_set

    An orthogonal instruction set does not impose a limitation that requires a certain instruction to use a specific register [1] so there is little overlapping of instruction functionality. [ 2 ] Orthogonality was considered a major goal for processor designers in the 1970s, and the VAX-11 is often used as the benchmark for this concept.

  9. Orthogonality principle - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_principle

    Stated in such a manner, this principle is simply a statement of the Hilbert projection theorem. Nevertheless, the extensive use of this result in signal processing has resulted in the name "orthogonality principle."