When.com Web Search

  1. Ad

    related to: csc graph vertices formula sheet calculator with steps printable pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Kosaraju's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kosaraju's_algorithm

    The primitive graph operations that the algorithm uses are to enumerate the vertices of the graph, to store data per vertex (if not in the graph data structure itself, then in some table that can use vertices as indices), to enumerate the out-neighbours of a vertex (traverse edges in the forward direction), and to enumerate the in-neighbours of a vertex (traverse edges in the backward ...

  3. Strongly connected component - Wikipedia

    en.wikipedia.org/wiki/Strongly_connected_component

    Several algorithms based on depth-first search compute strongly connected components in linear time.. Kosaraju's algorithm uses two passes of depth-first search. The first, in the original graph, is used to choose the order in which the outer loop of the second depth-first search tests vertices for having been visited already and recursively explores them if not.

  4. File:All Standard Model Vertices.pdf - Wikipedia

    en.wikipedia.org/wiki/File:All_Standard_Model...

    English: The above interactions form the basis of the standard model. All Feynman diagrams in the standard model are built from combinations of these vertices. The first row are the quantum chromodynamics vertices, the second row is the electromagnetic vertex, the third row are the weak vertices, the fourth row are the Higgs vertices and the final row is the electroweak vertices.

  5. Calculus on finite weighted graphs - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_finite...

    Differential equations or difference equations on such graphs can be employed to leverage the graph's structure for tasks such as image segmentation (where the vertices represent pixels and the weighted edges encode pixel similarity based on comparisons of Moore neighborhoods or larger windows), data clustering, data classification, or ...

  6. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    They are maximally connected as the only vertex cut which disconnects the graph is the complete set of vertices. The complement graph of a complete graph is an empty graph. If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament. K n can be decomposed into n trees T i such that T i has ...

  7. Table of simple cubic graphs - Wikipedia

    en.wikipedia.org/wiki/Table_of_simple_cubic_graphs

    The two edges along the cycle adjacent to any of the vertices are not written down. Let v be the vertices of the graph and describe the Hamiltonian circle along the p vertices by the edge sequence v 0 v 1, v 1 v 2, ...,v p−2 v p−1, v p−1 v 0. Halting at a vertex v i, there is one unique vertex v j at a distance d i joined by a chord with v i,

  8. Truncated icosahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_icosahedron

    According to Steinitz's theorem, the skeleton of a truncated icosahedron, like that of any convex polyhedron, can be represented as a polyhedral graph, meaning a planar graph (one that can be drawn without crossing edges) and 3-vertex-connected graph (remaining connected whenever two of its vertices are removed). [10] The graph is known as ...

  9. Mycielskian - Wikipedia

    en.wikipedia.org/wiki/Mycielskian

    Mycielskian construction applied to a 5-cycle graph, producing the Grötzsch graph with 11 vertices and 20 edges, the smallest triangle-free 4-chromatic graph (Chvátal 1974). Let the n vertices of the given graph G be v 1, v 2, . . . , v n. The Mycielski graph μ(G) contains G itself as a subgraph, together with n+1 additional vertices: a ...