Search results
Results From The WOW.Com Content Network
Conjugate variables are pairs of variables mathematically defined in such a way that they become Fourier transform duals, [1] [2] or more generally are related through Pontryagin duality. The duality relations lead naturally to an uncertainty relation—in physics called the Heisenberg uncertainty principle —between them.
These forces and their associated displacements are called conjugate variables. [1] For example, consider the p V {\displaystyle pV} conjugate pair. The pressure p {\displaystyle p} acts as a generalized force: Pressure differences force a change in volume d V {\displaystyle \mathrm {d} V} , and their product is the energy lost by the system ...
The set of natural variables for each of the above four thermodynamic potentials is formed from a combination of the T, S, p, V variables, excluding any pairs of conjugate variables; there is no natural variable set for a potential including the T-S or p-V variables together as conjugate variables for energy.
Each pair in the equation are known as a conjugate pair with respect to the internal energy. The intensive variables may be viewed as a generalized "force". An imbalance in the intensive variable will cause a "flow" of the extensive variable in a direction to counter the imbalance. The equation may be seen as a particular case of the chain rule.
In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation , Fenchel transformation , or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel ).
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics , the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations , namely those whose matrix is positive-semidefinite .
So charge density cannot be the conjugate to potential according to the definition on this page: the product should have the dimensions of energy times time (i.e. Action). — Preceding unsigned comment added by 2.225.129.250 06:02, 19 February 2015 (UTC)
Volume is one of a pair of conjugate variables, the other being pressure. As with all conjugate pairs, the product is a form of energy. As with all conjugate pairs, the product is a form of energy. The product p V {\displaystyle pV} is the energy lost to a system due to mechanical work.