When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    Such a partition is called a partition with distinct parts. If we count the partitions of 8 with distinct parts, we also obtain 6: 8; 7 + 1; 6 + 2; 5 + 3; 5 + 2 + 1; 4 + 3 + 1; This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by q(n).

  3. Polygon partition - Wikipedia

    en.wikipedia.org/wiki/Polygon_partition

    The fair polygon partitioning problem [20] is to partition a (convex) polygon into (convex) pieces with an equal perimeter and equal area (this is a special case of fair cake-cutting). Any convex polygon can be easily cut into any number n of convex pieces with an area of exactly 1/n. However, ensuring that the pieces have both equal area and ...

  4. Dividing a square into similar rectangles - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_square_into...

    The problem has two parts: what aspect ratios are possible, and how many different solutions are there for a given n. [7] Frieling and Rinne had previously published a result in 1994 that states that the aspect ratio of rectangles in these dissections must be an algebraic number and that each of its conjugates must have a positive real part. [ 3 ]

  5. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the ...

  6. Partition of a set - Wikipedia

    en.wikipedia.org/wiki/Partition_of_a_set

    Partitions of a 4-element set ordered by refinement. A partition α of a set X is a refinement of a partition ρ of X—and we say that α is finer than ρ and that ρ is coarser than α—if every element of α is a subset of some element of ρ. Informally, this means that α is a further fragmentation of ρ. In that case, it is written that ...

  7. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  8. Solid partition - Wikipedia

    en.wikipedia.org/wiki/Solid_partition

    In mathematics, solid partitions are natural generalizations of integer partitions and plane partitions defined by Percy Alexander MacMahon. [1] A solid partition of n {\displaystyle n} is a three-dimensional array of non-negative integers n i , j , k {\displaystyle n_{i,j,k}} (with indices i , j , k ≥ 1 {\displaystyle i,j,k\geq 1} ) such that

  9. Rank of a partition - Wikipedia

    en.wikipedia.org/wiki/Rank_of_a_partition

    The following notations are used to specify how many partitions have a given rank. Let n, q be a positive integers and m be any integer. The total number of partitions of n is denoted by p(n). The number of partitions of n with rank m is denoted by N(m, n). The number of partitions of n with rank congruent to m modulo q is denoted by N(m, q, n).