Search results
Results From The WOW.Com Content Network
Srinivasa Ramanujan (picture) was bedridden when he developed the idea of taxicab numbers, according to an anecdote from G. H. Hardy.. In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1]
A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [ 5 ] expressed as:
It is, moreover, the smallest number that can be represented as a sum of any number of distinct positive cubes in more than one way. [2] It is a highly powerful number : the product 3 × 3 {\displaystyle 3\times 3} of the exponents in its prime factorization 216 = 2 3 × 3 3 {\displaystyle 216=2^{3}\times 3^{3}} is larger than the product of ...
Semi-log plot of solutions of + + = for integer , , and , and .Green bands denote values of proven not to have a solution.. In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum.
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. This shows that the square of the n th triangular number is equal to the sum of the first n cube numbers. Also, the square of the n th triangular number is the same as the sum of the cubes of the integers 1 to n.
In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 2 3 = 8 or (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
The smallest integer m > 1 such that p n # + m is a prime number, where the primorial p n # is the product of the first n prime numbers. A005235 Semiperfect numbers