Search results
Results From The WOW.Com Content Network
Since DNA polymerase requires a free 3' OH group for initiation of synthesis, it can synthesize in only one direction by extending the 3' end of the preexisting nucleotide chain. Hence, DNA polymerase moves along the template strand in a 3'–5' direction, and the daughter strand is formed in a 5'–3' direction.
2 β units which act as sliding DNA clamps, they keep the polymerase bound to the DNA. 2 τ units which act to dimerize two of the core enzymes (α, ε, and θ subunits). 1 γ unit (also dnaX) which acts as a clamp loader for the lagging strand Okazaki fragments, helping the two β subunits to form a unit and bind to DNA.
The double-stranded structure of DNA provides a simple mechanism for DNA replication. Here, the two strands are separated and then each strand's complementary DNA sequence is recreated by an enzyme called DNA polymerase. This enzyme makes the complementary strand by finding the correct base through complementary base pairing and bonding it onto ...
DNA polymerase alpha also known as Pol α is an enzyme complex found in eukaryotes that is involved in initiation of DNA replication. The DNA polymerase alpha complex consists of 4 subunits: POLA1, POLA2, PRIM1, and PRIM2. [2] Pol α has limited processivity and lacks 3′ exonuclease activity for proofreading errors.
The 5′-untranslated region is the portion of the DNA starting from the cap site and extending to the base just before the AUG translation initiation codon of the main coding sequence. This region may have sequences, such as the ribosome binding site and Kozak sequence , which determine the translation efficiency of the mRNA, or which may ...
The diagram shows the effects of nicks on intersecting DNA in a twisted plasmid. Nicking can be used to dissipate the energy held up by intersecting states. The nicks allow the DNA to take on a circular shape. [2] The diagram shows the effects of nicks on intersecting DNA forms. A plasmid is tightly wound into a negative supercoil (a).
DNA polymerase II (also known as DNA Pol II or Pol II) is a prokaryotic DNA-dependent DNA polymerase encoded by the PolB gene. [1] DNA Polymerase II is an 89.9-kDa protein and is a member of the B family of DNA polymerases. It was originally isolated by Thomas Kornberg in 1970, and characterized over the next few years.
The polymerase is a monomeric protein with two distinct functional domains. Site-directed mutagenesis experiments support the proposition that this protein displays a structural and functional similarity to the Klenow fragment of the Escherichia coli Polymerase I enzyme; [3] it comprises a C-terminal polymerase domain and a spatially separated N-terminal domain with a 3'-5' exonuclease activity.