When.com Web Search

  1. Ad

    related to: series circuit laws of physics

Search results

  1. Results From The WOW.Com Content Network
  2. Kirchhoff's circuit laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_circuit_laws

    The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:

  3. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    Many circuits can be analyzed as a combination of series and parallel circuits, along with other configurations. In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1]

  4. List of physics mnemonics - Wikipedia

    en.wikipedia.org/wiki/List_of_physics_mnemonics

    A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma , v = fλ , E = mcΔT , V = π r 2 h and τ = rF sin θ .

  5. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    Ohm's Law chapter from Lessons In Electric Circuits Vol 1 DC book and series. John C. Shedd and Mayo D. Hershey, "The History of Ohm's Law" , Popular Science , December 1913, pp. 599–614, Bonnier Corporation ISSN 0161-7370 , gives the history of Ohm's investigations, prior work, Ohm's false equation in the first paper, illustration of Ohm's ...

  6. Duality (electrical circuits) - Wikipedia

    en.wikipedia.org/wiki/Duality_(electrical_circuits)

    parallel – series (circuits) resistance – conductance; voltage division – current division; impedance – admittance; capacitance – inductance; reactance – susceptance; short circuit – open circuit; Kirchhoff's current law – Kirchhoff's voltage law. KVL and KCL; Thévenin's theorem – Norton's theorem

  7. Gustav Kirchhoff - Wikipedia

    en.wikipedia.org/wiki/Gustav_Kirchhoff

    Gustav Robert Kirchhoff (German: [ˈgʊs.taːf ˈkɪʁç.hɔf]; 12 March 1824 – 17 October 1887) was a German chemist, mathematican and physicist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.

  8. Thévenin's theorem - Wikipedia

    en.wikipedia.org/wiki/Thévenin's_theorem

    The equivalent resistance R th is the resistance that the circuit between terminals A and B would have if all ideal voltage sources in the circuit were replaced by a short circuit and all ideal current sources were replaced by an open circuit (i.e., the sources are set to provide zero voltages and currents).

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.