Ads
related to: quadratic root calculator
Search results
Results From The WOW.Com Content Network
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Figure 4. Graphing calculator computation of one of the two roots of the quadratic equation 2x 2 + 4x − 4 = 0. Although the display shows only five significant figures of accuracy, the retrieved value of xc is 0.732050807569, accurate to twelve significant figures. A quadratic function without real root: y = (x − 5) 2 + 9.
Finding the root of a linear polynomial (degree one) is easy and needs only one division: the general equation + = has solution = /. For quadratic polynomials (degree two), the quadratic formula produces a solution, but its numerical evaluation may require some care for ensuring numerical stability.
Denoting the two roots by r 1 and r 2 we distinguish three cases. If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is not zero, and |r 1 | ≠ |r 2 |, the continued fraction converges to the root of maximum modulus (i.e., to the root with the greater absolute value).
A quadratic with two real roots, for example, will have exactly two angles that satisfy the above conditions. For complex roots, one must also find a series of similar triangles, but with the vertices of the root path displaced from the polynomial path by a distance equal to the imaginary part of the root. In this case, the root path will not ...
Newton's method is a powerful technique—in general the convergence is quadratic: as the method converges on the root, the difference between the root and the approximation is squared (the number of accurate digits roughly doubles) at each step. However, there are some difficulties with the method.
The roots , of the quadratic polynomial () = + + satisfy + =, =. The first of these equations can be used to find the minimum (or maximum) of P ; see Quadratic equation § Vieta's formulas .
The square root of a univariate quadratic function gives rise to one of the four conic sections, almost always either to an ellipse or to a hyperbola. If a > 0 , {\displaystyle a>0,} then the equation y = ± a x 2 + b x + c {\displaystyle y=\pm {\sqrt {ax^{2}+bx+c}}} describes a hyperbola, as can be seen by squaring both sides.