Search results
Results From The WOW.Com Content Network
A liquid in a partial vacuum, i.e., under a lower pressure, has a lower boiling point than when that liquid is at atmospheric pressure. Because of this, water boils at 100°C (or with scientific precision: 99.97 °C (211.95 °F)) under standard pressure at sea level, but at 93.4 °C (200.1 °F) at 1,905 metres (6,250 ft) [ 3 ] altitude.
This technique is used when the boiling point of the desired compound is difficult to achieve or will cause the compound to decompose. [1] Reduced pressures decrease the boiling point of compounds. The reduction in boiling point can be calculated using a temperature-pressure nomograph using the Clausius–Clapeyron relation. [2]
This reduces the boiling point of the liquid to be evaporated, thereby reducing or eliminating the need for heat in both the boiling and condensation processes. There are other advantages, such as the ability to distill liquids with high boiling points and avoiding decomposition of substances that are heat sensitive. [2]
The van 't Hoff factor i (named after Dutch chemist Jacobus Henricus van 't Hoff) is a measure of the effect of a solute on colligative properties such as osmotic pressure, relative lowering in vapor pressure, boiling-point elevation and freezing-point depression.
At elevated altitudes, any cooking that involves boiling or steaming generally requires compensation for lower temperatures because the boiling point of water is lower at higher altitudes due to the decreased atmospheric pressure. The effect starts to become relevant at altitudes above approximately 2,000 feet (610 m).
To stop the sprouting at the proper point, he heats it — "cures" — it in a peat-fired kiln. ... Distillation follows: the liquid, now called "beer," alcohol, because of its lower boiling point ...
The boiling point elevation happens both when the solute is an electrolyte, such as various salts, and a nonelectrolyte. In thermodynamic terms, the origin of the boiling point elevation is entropic and can be explained in terms of the vapor pressure or chemical potential of the solvent. In both cases, the explanation depends on the fact that ...
The normal boiling point is the boiling point at atmospheric pressure, but it can also be reported at higher and lower pressures. [3] Contributing factors ...